Polarities, quasi-symmetric designs, and Hamada's conjecture

نویسندگان

  • Dieter Jungnickel
  • Vladimir D. Tonchev
چکیده

We prove that every polarity of PG(2k − 1, q), where k ≥ 2, gives rise to a design with the same parameters and the same intersection numbers as, but not isomorphic to PGk(2k, q). In particular, the case k = 2 yields a new family of quasi-symmetric designs. We also show that our construction provides an infinite family of counterexamples to Hamada’s conjecture, for any field of prime order p. Previously, only a handful of counterexamples were known.

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

New quasi-symmetric designs by the Kramer-Mesner method

A t-(v, k, λ) design is quasi-symmetric if there are only two block intersection sizes. We adapt the Kramer-Mesner construction method for designs with prescribed automorphism groups to the quasi-symmetric case. Using the adapted method, we find many new quasi-symmetric 2-(28, 12, 11) and 2-(36, 16, 12) designs, establish the existence of quasi-symmetric 2-(56, 16, 18) designs, and find three n...

متن کامل

Pseudo Quasi-3 Designs and their Applications to Coding Theory

We define a pseudo quasi-3 design as a symmetric design with the property that the derived and residual designs with respect to at least one block are quasi-symmetric. Quasi-symmetric designs can be used to construct optimal self complementary codes. In this article we give a construction of an infinite family of pseudo quasi-3 designs whose residual designs allow us to construct a family of co...

متن کامل

Construction of a Class of Quasi-Symmetric 2-Designs

In this article we study proper quasi-symmetric 2 − designs i.e. block designs having two intersection numbers and , where 0 < < . Also, we present a construction method for quasi-symmetric 2 − designs with block intersection numbers and + 1, where is a prime number, under certain conditions on the cardinality of point set.

متن کامل

Quasi-symmetric 3-designs with a fixed block intersection number

Quasi-symmetric 3-designs with block intersection numbers x, y (0 ≤ x ≤ y < k) are studied. It is proved that the parameter λ of a quasi-symmetric 3-(v, k, λ) design satisfies a quadratic whose coefficients are polynomial functions of k, x and y. We use this quadratic to prove that there exist finitely many quasi-symmetric 3-designs under either of the following two restrictions: 1. The block i...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

عنوان ژورنال:
  • Des. Codes Cryptography

دوره 51  شماره 

صفحات  -

تاریخ انتشار 2009